Article

Smoke Detection on the Edge: A Comparative Study of YOLO
Algorithm Variants

Iosif Polenakis *

check for
updates
Academic Editors: Jozef Juhar and

Lyudmila Mihaylova

Received: 31 July 2025
Revised: 15 September 2025
Accepted: 13 October 2025
Published: 4 November 2025

Citation: Polenakis, I.; Sarantidis, C.,
Karydis, I.; Avlonitis, M. Smoke
Detection on the Edge: A
Comparative Study of YOLO
Algorithm Variants. Signals 2025, 6, 60.
https:/ /doi.org/10.3390/
signals6040060

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Christos Sarantidis

, Ioannis Karydis ©’ and Markos Avlonitis

Department of Informatics, Ionian University, 49100 Corfu, Greece; csarantidis@ionio.gr (C.S.);
karydis@ionio.gr (L.K.); avlon@ionio.gr (M.A.)
* Correspondence: ipolenakis@ionio.gr

Abstract

The early detection of smoke signals due to wildfires is vital in containing the extent of loss
and reducing response time, particularly in inaccessible or forested areas. For lightweight
object detection, this study contrasts the YOLOv9-tiny, YOLOv10-nano, YOLOv11l-nano,
YOLOv12-nano, and YOLOv13-nano algorithms in determining wildfire smoke at extended
ranges. We present a robustness- and generalization-checking five-fold cross-validation.
This study is also the first of its kind to train and publicly benchmark YOLOv10-nano
up to YOLOv13-nano on the given dataset. We investigate and compare the detection
performance against the standard performance metrics of precision, recall, F1-score, and
mAP50, as well as the performance metrics regarding computational efficiency, including
the training and testing time. Our results offer practical implications regarding the trade-
off between pre-processing methods and model architectures for smoke detection when
applied in real time on ground-based cameras installed on mountains and other high-
risk fire locations. The investigation presented in this work provides a model in which
implementations of lightweight deep learning models for wildfire early-warning systems
can be achieved.

Keywords: YOLO algorithm; smoke detection; fire detection; wildfire; edge computing; cameras

1. Introduction

Wildfires and urban fires have become a vital concern, becoming rampant over the
years. Wildfires that spread at a fast rate and present a threat to human life, building
structures, and biological habitats are present too. To minimize such potential threats,
advanced prediction and emergency response in a reasonably short period continue to
be critical. Computer vision and artificial intelligence (AI) are facilitative of each other
and offer real-time detection and decision-making capabilities, resulting in integrated
smoke-monitoring systems.

Object detection or locating and further detection of objects of interest in images are the
primary features of modern safety systems. Modern systems of object detection involving
deep learning methods and convolutional neural networks (CNNs) are applicable to the
single-stage (and multi-stage) detection of hazardous elements of the surrounding environ-
ment, such as those related to smoke or construction, in different operational conditions.

This paper investigates the performance of the YOLO object-recognition models,
which are useful in the process of detecting smoke in visual images. In our research, we
experimented on several variants of YOLO so as to determine which variant can be said to
offer the most optimal solution to the problem of instant smoke detection.
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1.1. Object Recognition

The primary goal of object recognition techniques is the identification and classification
of a series of elements that are represented in digital images. The two main functions
achieved by the system are object classification and object localization. The detection
system does not only output labels of categories; it also shows identified objects visually.
An explanation of simple classification techniques is included. This procedure employs
bounding boxes in order to denote where objects are on the pictures spatially.

YOLO models [1] are a particular form of model that offers the ability to obtain higher
rates of accuracy in prediction and a lower level of latency in inference in scenarios that
demand high performance. Given that urgent tasks for functions like smoke detection
demand immediate responses, it is reasonable that YOLO would be implemented in terms
of achieving inclusive classification and localization tasks.

1.2. Smoke Recognition

Detecting smoke by taking visual input through the computer is an important aspect of
developing warning systems for man-made and natural disasters that provide early enough
warnings. Even during the initial phases of fire development, the most well-known visual
signs include flames, smoke plumes, and color differences in temperature [2]. The proper
detection of these signs through the imaging method enhances the emergency response
systems to a great extent.

The essential characteristics of smoke make it hard to identify. It is semi-transparent,
and it seems fluid as it reacts to changing ambient lighting conditions and the presence of
wind. The YOLO deep learning model and its improved version can learn various visual
qualities on training data and hence distinguish safe and dangerous visual aspects, while it
can achieve remarkable performance in terms of false alarms.

1.3. Related Work

Recently synthesized wildfire smoke advancements have used convolutional and
Transformer-inspired deep learning designs. Earlier systems detected smoke via com-
puter vision and augmented reality techniques [3]. Techniques loosely based on the CNN
architecture, i.e., enhanced YOLOv4, provided significant improvements over their precur-
sors, and quantifiable improvements in smoke detection performance were imparted [4].
Additionally, the lightweight versions of YOLO have gained ground in real-time wild-
fire detection. Alkhammash et al. [5] compared YOLOv9-tiny and YOLOv10-nano to
YOLOv11-nano on wildfire detection tasks and found that the latter outscored the former
(precision 0.845, mAP50 0.859). Li et al. [6] also built upon YOLOv11, adding a multi-
scale convolutional attention (MSCA) module to enhance smoke detection. Liu et al. [7]
introduced the single-shot multiBox detector (SSD), an efficient and effective single-stage
object detector that regresses the bounding-boxes and the class-probabilities on the multi-
scale feature-maps and default-boxes; they evaluated the technique with the dataset given
in [8]. Wang et al. [9] proposed the Transformer-based cross contrast patch embedding
(CCPE) with a modified Swin Transformer that deals with low-level feature mobilization in
smoke identification and tested it on the novel RealFire benchmark. EFA-YOLO [10] is a
lightweight attention-enhanced YOLO model that also claims ultra-efficient detection and
is thus fit to be deployed on the edges. These studies are an indication of the usefulness of
architecture improvements and domain-aware pre-processing, but none of them evaluated
multi-step pre-processing methods (e.g., HEQ, Cropping) or YOLOv13-nano. These are
gaps that our study partially (the former) and, in parts, fully (the latter) fills. Moreover,
in [11], the authors experimented with YOLOv9-tiny on a larger dataset that contained
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the one that our research used, without using the five-fold cross validation method. They
achieved a mAP50 of 0.885 in a multimodal dataset containing 2321 images.

Recently, in [12] Yulei et al. propose a feature pyramid network in order to address
the model’s ineffectiveness to detect small objects. In [13] Liau and Wong replace the
back-end network of SSD by more efficient networks such as SqueezeNet and MobileNet in
order to achieve real-time speed on edge devices. Ahmed et al. in [14] compare different
versions of SSD-MobileNet architectures with their own one named EAC-FD. Their model
demonstrates a nice balance between accuracy and computational complexity. In [15]
Jingwu et al. propose a target detection network, which is based on an improved feature
pyramid structure and solves the problem of feature loss in the down-sampling process,
when it is running on edge devices. Their findings conclude that it is ideally suitable for real
time fire-detection. In [16] Huang et al. propose a lightweight smoke detection model which
reduces the parameters and increases speed, while maintaining accuracy in comparison
with the model compared. Vasquez et al. in [17] explore the performance of transfer
learning in smoke and wildfire detection. Their experiments where conducted using
edge devices and different YOLO variants were also taken into consideration. Wang et al.
in [18] investigate YOLOvVS8 with the addition of 3 new modules for improvement in order
to tackle the smoke recognition problem. Their findings surpass state-of-the-art smoke
detection systems. In [19] Li et al. investigate a fire recognition method based on YOLOX
convolutional neural network. Their method improves the detection accuracy, compared to
the YOLOX baseline.

Table 1 provides a systematic comparison of prior smoke detection approaches, high-
lighting their main contributions, strengths, and limitations. The table contrasts YOLO-
based, SSD, and transformer-based methods, summarizing how each handles accuracy,
efficiency, and deployment considerations. This overview clarifies the relative advantages
of existing techniques and positions our work, which leverages YOLOv13-nano with multi-
step pre-processing and rigorous cross-validation, as a more robust and efficient solution
for real-time wildfire smoke detection.

Table 1. Summary of prior smoke detection approaches, highlighting their contributions, strengths,
and limitations.

Approach

Contribution

Strengths

Limitations

YOLO-based (YOLOv4-v13)
[4-6,10,11,17-19]

Lightweight adaptations,
attention modules, backbone
refinements, benchmarking on
wildfire datasets.

High accuracy, real-time
detection, efficient on edge
devices, scalable
improvements across
versions.

Limited evaluation of
multi-step pre-processing,
some sensitivity to small or
occluded smoke regions.

Single-Shot MultiBox Detector
(SSD) [7,8,13,14]

Early single-stage detector
with backbone variants
(SqueezeNet, MobileNet) and
custom SSD derivatives.

Simple architecture, efficient
multi-scale detection,
adaptable to real-time edge
applications.

Lower accuracy compared to
modern YOLO variants; less
effective on thin or distant
smoke.

Transformer-based (CCPE,
Swin) [9]

Cross-contrast patch
embedding with transformer
backbones.

Strong feature representation,
robustness in complex
backgrounds.

Computationally heavier,
reduced feasibility for
real-time deployment on edge
devices.

Hybrid /Pyramid
networks [12,15,16]

Feature pyramid refinements
and lightweight
smoke-specific designs.

Enhanced small-object
detection, parameter
reduction with competitive
accuracy.

Gains often task-specific,
limited generalization across
benchmarks.
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1.4. Motivation and Contribution

Since models of object identification based on deep learning can provide timely warn-
ings and improved situational awareness, the study underpinning the present work consid-
ers deep learning-based object identification models.

The main contributions are the following:

* A comparison of YOLOvV9-tiny [20], YOLOv10-nano [21], YOLOv11-nano [22],
YOLOv12-nano [23], and YOLOv13-nano [24,25] models trained and tested.

*  Comparing the performances in terms of the measures mAP50, mAP50_90, F-1 Score,
precision, recall and training time and inference time.

*  Provide an assessment on the variants of YOLO that can be utilized in the real-time
scenario of smoke detection over edge computing systems.

Among the key findings of this work it should be highlighted that we provide a bench-
marking of YOLOv10-YOLOv13 nano models on wildfire smoke detection with a 5-fold
cross-validation scheme. Additionally, we formalized detection-aware Cropping as a pre-
processing technique, analyzing its impact across different Crop percentages. Moreover, it is
shown that YOLOv13-nano, combined with Cropping and Histogram Equalization (HEQ),
achieves the most balanced trade-off between accuracy and computational efficiency.

2. Theoretical Background

After outlining what deep learning detection frameworks are all about, under this section
we establish a presence on YOLO algorithm and on the fact that it has become crucial in a
real-time object identification system. Next, we discuss the basics behind the YOLO object
detection algorithm and outline our approach on its deployment (especially of the nano
variants of YOLO algorithm) for smoke detection in forest imagery over edge computing.

2.1. Real-Time Object Recognition

The idea behind the generic layout of the architecture of YOLO is exhibited as well
as the unique group of signals within the identification model that manifests itself above
and beyond conventional systems and delivers a new course of speed, precision and
performance deployable characteristic. Research on this field should emphasize on this
technology due to the need of the real-time object identification technology in the safety
critical systems i.e., smoke detection. The YOLO model, the computational concept, and
design principles that it involves to get used in research are discussed next.

As a single-stage object detection algorithm, YOLO approach makes object detection
process resemble a simple regression. It is more popular because of its high precision and
quick results because it can be used in real-time implementation [26,27]. YOLO compared
to the two-stage approach of Faster R-CNN has real-time benefits because it analyzes
the whole images only once to predict boxes, and class probabilities [26]. YOLO’s main
advantages include:

* Low latency and high speed, making it appropriate for real-time applications.
¢  End-to-end training, thus reducing complexity.
¢ Global reasoning of the image at a glance.

YOLO converts input pictures into a grid in order to draw predictions on boxes and
per-class levels of confidence of every cell. YOLO has had several variants which have
enhanced the computing speed, the drawing of an anchor box and backbone structure [28].

2.2. Edge Computing Using YOLO Algorithm

Smoke detection procedures require real-time object recognition since they are time
sensitive. Considering that the nano and small output of YOLO presents the combination
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of high accuracy in detection as well as quick processes and resource utilization, nano and
small computer version of YOLO can be used in embedded systems to carry out real-time
processes [29].

Edge computing facilitates the use of the surveillance cameras and sensor nodes
nearer the resources of the computational intelligence. The given model is useful in the
case of a smoke detection system as there is no trustworthy bandwidth one can utilize due
to it being significantly quicker and conveying information more effectively. The small
footprint of model and fast inference speed make the YOLO-nano and the YOLO-tiny a
better architecture to employ at the edge. They are applicable with Raspberry P4i, Jetson
Nano and other microcontroller units [30].

The main focus of this work is to determine the extent to which various versions of
the YOLO object-detecting models would detect the smoke in the forest imagery. Through
our investigation we focus on the process of model selection, training of a vast quantity
of environments and follow-through examination with conventional methods including
five-fold cross-validation and assessment criteria. We examined various pre-processing
techniques comparing them to the baseline (i.e., no pre-processing techniques are deployed)
in order to investigate which combination of pre-processing techniques and over which
variant of YOLO exhibits the best of its potentials performing in rational time and achieving
high detection rates.

Particularly, five variants of YOLO are investigated, focusing on the nano versions that
can be fully utilized in the real-time detection of smoke (considering their operational costs
on low configuration of the hardware and even work on the edge deployment). Regarding
the baseline, the experiments were performed without pre-processing of the image. We
mostly consider the Cropping and Histogram Equalization pre-processing techniques,
while specifically for the case of Cropping, our approach is based on which region of image
could be cropped in order to run the model again in that region. It is necessary to mention
that larger Crop percentages preserve more image context, improving detection accuracy.
A 90% Crop percentage will indicate that 90% of original image is still there to proceed
with experiment in the second round and 40% would indicate that 40% of original image
will be preserved to do experiment in the second round.

3. Methodology

In this section we discuss the application of the YOLO versions on smoke detection
in forest imagery as also the methodology we applied to pinpoint the variant of YOLO
that will be the optimal to be utilized in the real-time scenario of smoke detection over
edge-computing systems throughout a comparative study outlining its performance over a
set of pre-processing techniques.

3.1. Investigating the Use of YOLO Versions for Detecting Smoke in Images

Smoke is amorphous and semi-transparent, so it is quite difficult to identify (particu-
larly when in a low contrast form or under noisy conditions). Because of interference of
the background noise and the nature of the environment, smoke detection cannot make
use of the nature of fi re, such as distinctive edges and color. Although its architecture has
undergone modifications in its most recent variants and ensuring it can be used alongside
training in the rightful manner, YOLO provides improved model outputs on harder classes
since the detection of smoke prevention is of major importance in fi re control programs.

Five versions of YOLO model (YOLOv9-tiny, YOLOv10-nano, YOLOv1ll-nano,
YOLOv12-nano, and YOLOv13-nano) were trained through standard training procedures
on a given dataset and their performance was evaluated by a given system. The main focus
of this work is to investigate how different configurations influenced the accuracy of the



Signals 2025, 6, 60 6 of 26

classification, the speed of computation, and model behaviour, over a series of five-fold
cross-validation experiments for different deployments of pre-processing techniques.

3.2. Investigating the Potentials of Cropping Pre-Processing Techniques

In this work, beyond the investigation of the effectiveness of the pre-processing
technique, and particularly of the case of Cropping, we investigate how the percentage
of Cropping in the imagery affects its detection confidence. In Figure 1 we observe the
confidence vs Crop percentage of all models used in this research, while in Figure 2 it is
provided an illustrative example on the Cropping of an image according to Crop percentage.

Confidence vs Crop percentage

Confidence

0.35 ——v9 —W—v10 —h—vil —E—v12 —O—v13

25 30 35 40 45 50 55 60 65 70 7% 80 85 90 9% 100
Crop Percentage

Figure 1. Comparison of confidence and Crop percentage for all YOLO models.

Cropped 50% Cropped 70% Cropped 90%

Original Image

Figure 2. Example of image Crop.

YOLOvVY-tiny sets an increasing trend in regards to Crop percentages that vary between
25% and 100%. At small Crops and reaching nearly 0.60 at full-image inference it starts
at around 0.39. It assumes that, however much better the degree of focus can be achieved
with the help of detection-aware Cropping, the ability to locate high confidence will
not be applicable where the Crop lacks contextual information provided by YOLOv9-tiny.
The advantage of this confidence notably increases beyond 55% Crop size and the argument
behind this is that the larger the Crop, the more contextual information remains even in it
to permit the small model to be applied more perfectly aligned with smoke.

YOLOv10-nano has a modest decrease, about 30% of the Crop, and then slowly helps
itself along, and the confidence increases with the size of the Crop. The level is 25%
confidence is 0.49 and 30% is 0.42 and gradually increases to 0.57 at the maximum size.
Such a decrease at the outset means that feature appreciation during this model can be
poor when Crops are so small. Nevertheless, the smooth recovery since 35% proves that
Cropping the image can be employed as leverage in favor of YOLOv10-nano provided that
the ratio of the cropped portion is preserved to be large; i.e., the proportion of the relevant
features is kept to be high as well.

YOLOv1l-nano is starting with confidence level (circ. 0.40 at 25-30%) and has a
more pronounced positive gradient commencing at the level of 35%. It steadily rises,
upon referring to an average of above 0.53 on an average at 65% Crop percentage and
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above 0.61 on average at 95%. Greater effect of confidence enhancement over its prior
nano variants suggests that the latest YOLOv11-nano will be more susceptible to context
deprivation tight Crops, but it would be reasonable to consider more plentiful cues when
viewing more of the scene in the field of view.

YOLOv12-nano shows steep and constant rise after attaining not very high initial
confidence (0.41-0.45 between 25% and 40%) then gaining stable growth after 45%. The rate
of growth acquires momentum after exceeding 80% and at 95% growth rate is about 0.52.
YOLOvV12-nano seems to offer more resistance to smaller Crops than the predecessors, so
feature extraction seems less susceptible as input sizes arrive at mid-level sizes, and gener-
ates more value by keeping more of the scene.

YOLOv13-nano portrays a relatively linear and steady growth of around 0.42 up to
around 25-30%, a sharper growth past 40%, and an evened specifications of around 0.58
when the Crop grow to full-size. It has some slight troughs at about 45-60% which is loss
of context due to being cropped here and there but by having larger Crop windows there is
even progression in confidence. The fact that this curve can be repeated means that at the
same time, YOLOv13-nano is more consistent over different Crop percentages and seems
to be the optimal in the scenario where most of the initial image is to be lost.

It is worth noting that the differences that have occurred in later nano variants
(YOLOV11-13) are more likely to be gentle, small gradual in comparison to the differences
that occurred earlier (YOLOvV9-nano, YOLOv10-nano) that are more erratic, and sensitive
to small Crops. The unified procedure that implements the Cropping selection includes
three steps, namely, the training of the models, the selection of the optimal Crop percentage
and its evaluation on the Cropping dataset, as listed below:

1.  Train the Models

¢ For each candidate YOLO architecture (YOLOv9, YOLOV10, ...), run train.py on
all folds of your dataset.
*  Save the trained weights (best.pt) per fold.

2. Determine Optimal Crop Percentage

. For each trained model checkpoint:

-  Run find optimal Crop on validation images.

-  Loop over Crop scales (e.g., 0.25 — 1.0).

- For each detection, Crop around it, re-run inference, and log detection
confidences.

—  Compute the average confidence per scale for all images.

¢  Select the Crop scale with the highest mean confidence.
*  Store the chosen Crop percentage for each model architecture.

3. Evaluate Cropped Dataset

e Use the optimal Crop percentage per model as input to the evaluation of the
Cropped dataset routine.

—  Crop each test image around detections.
—  Rescale ground truth labels.
—  Evaluate detection metrics (precision, recall, mAP).

*  Save results with metrics and Crop percentage for comparison.

Algorithm 1 integrates the three stages of the pipeline into a single structured process.
First, each YOLO architecture is trained separately on dataset folds through cross-validation
to ensure robust performance and adaptation to the data, with the trained weights from
each fold stored for later use. Next, the algorithm performs an optimal Crop search using
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a detection-aware strategy by exploring multiple Crop scales ranging from 25% to 100%
of the image size. For each validation image, detections are obtained from the model,
Crops of the specified scale are extracted around each detection, and these cropped regions
are re-evaluated by the model to compute the average detection confidence at each scale.
The Crop scale that yields the highest average confidence is selected as the optimal Crop
percentage for that model. Using this optimal Crop percentage, all validation images are
then cropped and resized, and the trained model is evaluated on the modified dataset.
Standard detection metrics such as precision, recall, F1-score, and mean average precision
(mAP) are computed to confirm that the chosen Crop scale not only maximizes confidence
but also leads to strong performance across established benchmarks. Finally, for each
YOLO architecture, the optimal Crop percentage along with the corresponding evaluation
metrics are stored in a summary table, enabling direct comparison of algorithms, Crop
scales, and overall performance.

Algorithm 1: Optimal Crop Selection for Smoke Detection Models
Input: Dataset folds D, YOLO architectures A, Crop scales S = {0.25,...,1.0}
Output: Optimal Crop percentage and evaluation metrics for each model

1 foreach architecture a € A do

2 foreach fold f € D do

3 Train YOLO model M, ¢ on fold f;

4 | Save trained weights W, ¢;

5 | Initialize conf_avg|[s] < 0 for all s € S;

6 foreach scales € S do

7 foreach validation image I in held-out fold do

8 Run inference with M,  on I and obtain detections {d};

9 foreach detection d € {d} do

10 Crop I around d with scale s to get Is;

11 Run inference with M, fon I; and obtain confidence c;
12 Accumulate c into conf_avg|s];
13 | Selects* <— arg max;cs conf_avgls|;
14 foreach fold f € D do
15 Apply Cropping with percentage s* to dataset of fold f;
16 L Evaluate M, Fon cropped dataset and compute metrics (P, R, F;, mAP);
17 Save results (a,s*, P, R, F{, mAP);

18 return Summary table of architectures, optimal Crop percentages, and metrics

3.3. Investigating the Capabilities of YOLO Variants over Different Techniques

The study was focused on model performance and measured which version of YOLO
performed better over 100 epochs of training. The condition of various training durations
was applied in the experiment to determine whether long training improves accuracy.
The hyperparameter settings were identified in the same way to facilitate the assessment of
results using all training versions. The factors (hyperparameters) were used in the form:
data = fold_yaml, epochs = 100, imgsz = 640, device = [0, 1, 2], batch = 39, where fold_yaml
is the different yaml folder used for the different folds, 100 epochs was a decent number
for training, 640 image size ensured that no image information was lost, device = [0, 1, 2]
indicates that 3 GPUs were used during training and batch value of 39 was set in order to
prevent the GPUs from reaching their limits.
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The chosen hyperparameter settings were based on a balance of prior defaults, com-
putational feasibility, and empirical validation runs. A summary of the selected values and
their justifications is provided in Table 2. Next, we provide a brief discussion on the most
critical ones:

—  The choice of 100 epochs follows prior practice in YOLO-based studies on small-
sized or medium-sized datasets, which report that this range is sufficient for stable
convergence without overfitting. Larger epoch counts led to only marginal gains in
pilot tests while significantly increasing training time.

—  The image resolution of 640 pixels was adopted as it represents the default setting
in YOLO literature, providing a balance between capturing fine detail and keeping
inference cost manageable.

—  The batch size of 39 was selected based on the available GPU memory: it allowed effi-
cient utilization of the three GPUs while avoiding memory overflow, and preliminary
trials with higher values showed no performance benefit.

Overall, these choices reflect a compromise between computational feasibility, litera-
ture standards, and empirical evidence from pilot experiments, ensuring that the models
converged robustly under realistic resource constraints.

Table 2. Summary of hyperparameter choices and their justification.

Hyperparameter

Justification

Epochs =100

Image size = 640
Batch size = 39
Device = [0, 1, 2]

Fold_yaml

Sufficient for stable convergence on small datasets; longer runs showed diminishing returns while increasing
training time.

Default in YOLO literature; balances fine detail preservation with manageable computational cost.
Optimized for available GPU memory (3 GPUs); maximizes throughput without memory overflow.
Parallelized training across 3 GPUs for faster convergence and efficient resource use.

Enables five-fold cross-validation, reducing variance and improving generalization.

The study carried out a five-fold cross-validation, which enhanced the dependability
and usefulness of the findings. In every round, one compartment (fold) was utilized in
the inference and four compartments (folds) were utilized in training, while the entire
dataset was split into five equal compartments (folds). By employing relatively small and
uniform datasets, the method reduces variance in the dataset as well as bias in evaluation
performance [31]. In this paper, we utilized a Smoke Labelling Dataset from Roboflow
which features 737 images of smoke labelled with YOLO annotation format [32]. Every
image is accompanied by label files that contain the bounding box coordinates along with
class tags. Evaluation of models took place through standard object detection metrics:

*  Precision measures the proportion of correctly predicted positive instances out of all
predicted positive samples.

TP
Precision = ————— 1
recision TP+ ED’ (1)

where TP represents true positives and FP represents false positives.
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*  Recall (or sensitivity) measures the proportion of correctly predicted positive instances
out of all actual positive samples.
TP

Recall = m, (2)

where FN represents false negative samples.

. F1-Score is the harmonic mean of precision and recall. It balances the two metrics,
especially when there is an uneven class distribution.
Precision - Recall

F1- =2
Score Precision + Recall ®)

*  Mean Average Precision (mAP) is used mainly in object detection. It calculates the
average precision (AP) for each class and then computes the mean across all classes. It
gives a comprehensive measure of both precision and recall across multiple thresholds.

1 N
AP = — ) AP; 4
m N;:Z1 ir (4)

where N is the number of classes and AP; is the average precision for class i. This
metric can be deployed also by considering the IoU values (intersection-over-union)
as mAP50 and mAP50_95.

* Training Time and Testing Time assess the computational efficiency of each ver-
sion [28,30].

Multi-metric assessment provides a complete view of system performance and deployabil-
ity because edge computing demands rapid accurate operations [29,30].

3.4. Edge-Device Deployment and Lightweight Architecture Synthesis

Real-time wildfire smoke detection often requires deployment on resource-constrained
edge devices, such as NVIDIA Jetson Nano, Raspberry Pi, or other low-power embedded
systems. Standard YOLO architectures, while highly accurate, are computationally de-
manding and memory-intensive, which can limit their applicability in these environments.
To address this, our methodology focuses on lightweight YOLO variants (YOLOv9-tiny
to YOLOv13-nano) and explores strategies for architecture synthesis that optimize per-
formance for edge computing. The key considerations for deploying YOLO models on
edge devices include, namely, the model pruning, the model quantization, the knowledge
distillation and the edge-aware pre-processing, as listed below:

¢ Model Pruning: Reduces the number of neurons, channels, or layers by removing
redundant parameters, minimizing memory requirements without a significant loss
of detection accuracy.

*  Quantization: Converts model weights from 32-bit floating point to lower-precision
representations (e.g., 16-bit or 8-bit integers), which decreases model size and acceler-
ates inference on CPUs and GPUs typical of edge devices.

e  Knowledge Distillation: Transfers knowledge from a larger “teacher” model to a
smaller “student” model, allowing the compact model to maintain high accuracy
while improving efficiency.

e  Edge-Aware Pre-processing: Applies techniques such as Histogram Equalization and
detection-aware Cropping before inference, reducing input complexity and improving
the extraction of relevant features in noisy or low-contrast wildfire imagery.
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We integrate these optimization strategies into our comparative analysis of YOLO
variants. After training each model through cross-validation and selecting optimal pre-
processing parameters (Sections 3.1 and 3.2), we assess deployment readiness by simulating
inference on typical edge-device constraints. This includes evaluating the following factors:

¢  Memory Footprint: Amount of RAM required to load and run the model.

* Inference Speed: Frames per second (FPS) achievable under edge-device hardware
constraints.

¢ Detection Accuracy: Ensuring that optimizations such as pruning and quantization
do not degrade performance on smoke detection metrics (precision, recall, F1-score,
and mAP).

By systematically combining lightweight architecture selection, compression tech-
niques, and edge-aware pre-processing, our approach provides a practical pathway for
deploying real-time wildfire smoke detection systems on low-power devices. This extension
ensures that our methodology not only evaluates detection performance but also addresses
practical deployment considerations, fulfilling the edge-computing focus of the paper.

4. Evaluation

In this section we provide an experimental comparison of the selected models of
YOLO aiming on the detection of the presence of smoke in forest imagery, assessing their
performance over different pre-processing techniques that focus on distinguishing the
optimal selection for edge computing.

4.1. Experimental Design

For the conduction of the experimental evaluation, we utilized the dataset provided
in [32,33], containing 737 images of smoke, acquired from ground cameras, located in hills
or mountains. The models were evaluated using the five-fold cross-validation method.
The images refer to landscapes of exterior space mostly in hills and mountains in period
of time where the daylight was available and the weather was clear with mostly sunshine
indicating epochs of the year where the wildfires are more probable to occur.

The series of evaluation experiments were conducted on a workstation equipped with
three NVIDIA RTX A5000 GPUs, NVIDIA, Santa Clara, USA, each with 24,564 MiB of
dedicated memory. During the training phase, all three GPUs were utilized concurrently
in order to accelerate convergence and handle larger batch sizes, whereas the inference
phase was carried out using a single GPU to simulate realistic deployment conditions.
GPU parallelization was achieved through the CUDA library (version 12.8), which enabled
efficient multi-device allocation and synchronization. The software environment was based
on Python 3.10.12, with model implementation and training pipelines managed through
the Ultralytics framework (version 8.3.63), ensuring reproducibility and compatibility
with the most recent YOLO architectures. In addition to the hardware and software
setup, careful optimization of training hyperparameters was applied to maximize resource
utilization while maintaining experimental consistency across folds. The complete project,
including the pre-processing scripts, training configurations, and labeled dataset, has been
made publicly available in [32], allowing for transparency, reproducibility, and potential
extensions by the research community.

In Figure 3 it is depicted an example of a validation batch over the deployment
of different pre-processing techniques across different YOLO variants. In the first row
there are depicted the confidence values when deploying no pre-processing technique
(i.e., baseline),in the second row there are depicted the corresponding confidence values
applying only the Crop pre-processing technique, in the third row there are depicted the
corresponding confidence values applying only the HEQ pre-processing technique, while
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in the fourth row there are depicted the corresponding confidence values applying both
the Crop and HEQ pre-processing techniques.
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Figure 3. Confidence values on validation batch over the YOLO variants when applying no pre-
processing (baseline), the Crop pre-processing technique, the HEQ pre-processing technique, and a
combination of these techniques (Crop-HEQ) pre-processing technique.

As we can observe from the batch images presented in Figure 3 the comparison of dif-
ferent YOLO variants across multiple pre-processing techniques reveals several interesting
trends in wildfire smoke detection. Under the baseline condition, all YOLO models per-
form strongly, with confidence levels ranging between 0.8 and 0.9. YOLOV9, v10, and v11
consistently reach 0.9, while v12 and v13 provide slightly lower values at 0.8, suggesting
that later versions may adopt stricter detection thresholds. When Cropping is applied as a
pre-processing step, the confidence scores decline in this case. YOLOV9 retains a relatively
strong score of 0.8, but the later versions, from v10 through v13, drop to values between
0.7 and 0.8. This reduction indicates that removing contextual information around the
smoke regions can hinder the models’ certainty. Histogram Equalization (HEQ), on the
other hand, stabilizes and often improves performance compared to Cropping. Confidence
levels range between 0.8 and 0.9 across all versions, with YOLOv12 and v13 achieving 0.9,
highlighting that contrast enhancement allows the models to better distinguish smoke from
the background. The combined pre-processing of Cropping and HEQ shows mixed results.
While YOLOVY, v10, and v13 remain stable at around 0.8, YOLOv12 drops significantly to
0.5, indicating that over-processing can distort the features required for robust detection.
Overall, in this case it is demonstrated that baseline and HEQ pre-processing are the most
reliable strategies, as they maintain consistently high confidence across models. Cropping
alone reduces detection certainty by eliminating contextual cues, and the combination
of Crop with HEQ introduces variability that can sometimes be detrimental. Among the
models, YOLOvV9 and v13 emerge as the most robust, while YOLOv12 appears particularly
sensitive to pre-processing choices. This qualitative ablation suggests that simple or moder-
ate pre-processing, particularly Histogram Equalization, is more beneficial than aggressive
transformations when aiming for stable and confident smoke detection.



Signals 2025, 6, 60 13 of 26

The methodology pipeline followed for the conduction of the evaluation experiments
of this study involves the dataset acquisition that include the wildfire smoke images,
the performance of the pre-processing techniques investigated in this study, the conduction
the five-fold cross-validation experiments including the tuning of the hyper-parameters,
the metrics interpretation, and concludes to the decision of the most effective combination
after the analysis of the exhibited results. An overview of the methodology pipeline is
depicted in Figure 4.

5-Fold Cross Validation &
Hyperparameters Tuning Metrics Interpretation

Data-set Pre-processing Techniques Results

5 Folds
Randomly divided
Hyperparameters:

Precision
Recall
F1-Score
mAP50

Roboflow Wildfite Most efficient technique:

Smoke images

No Pre-Processing (baseline)

Detection aware cropping (Crop) . YOLOvI3nanoin

combination with HEQ
and Crop

o Image size = 640
o epochs =100

o batch =39

o device = [0,1,2]

Histogram Equalization (HEQ)
Combination (Crop-HEQ)

* 737images
* 737labels

mAP50_95
Training Time
Inference Time

Figure 4. Evaluation methodology pipeline diagram.

4.2. Experimental Results

In Figures 5-9 we present the precision and recall curves against the exhibited confi-
dence for the investigated YOLO variants (V9 to V13), respectively, deploying the baseline
(no pre-processing techniques) the Crop pre-processing technique, the HEQ pre-processing
technique, as also their combination Crop-HEQ pre-processing technique. In Figures 5-9
the x-axis represents the confidence while the y-axis represents the Average Precision (a)
and the Average Recall (b).
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Figure 5. Average Precision (a) and Average Recall (b) curves exhibited for YOLOvV9-tiny using the
baseline technique, and the Crop, HEQ, and Crop-HEQ pre-processing techniques.
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Figure 6. Average Precision (a) and Average Recall (b) curves exhibited for YOLOv10-nano using the
baseline technique, and the Crop, HEQ, and Crop-HEQ pre-processing techniques.
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Figure 7. Average Precision (a) and Average Recall (b) curves exhibited for YOLOv11-nano using the
baseline technique, and the Crop, HEQ, and Crop-HEQ pre-processing techniques.
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Figure 8. Average Precision (a) and Average Recall (b) curves exhibited for YOLOv12-nano using the
baseline technique, and the Crop, HEQ, and Crop-HEQ pre-processing techniques.
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Figure 9. Average Precision (a) and Average Recall (b) curves exhibited for YOLOv13-nano using the
baseline technique, and the Crop, HEQ, and Crop-HEQ pre-processing techniques.

Next, the comparative results are presented in a sequence of bar-charts depicting the
metric utilized, namely, Precision, Recall, F1-Score, mAP50 and and mAP50_95. In each
plot (see, Figures 10-13) the x-axis corresponds to the metrics over a block of the exhibited
values correspond to each YOLO variant, while the y-axis corresponds to the exhibited
value of each metrics for each YOLO variant. In all the results depicted in Figures 10-13,
the exhibited values in y-axis for each metric are averaged over the five folds after the
five-fold cross validation series of experiments.

In Figure 10 we observe the evaluation results of all algorithms without using any
pre-processing techniques. The evaluation metrics show that version v13 is at the top in all
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the metrics followed by others and the best values are: Precision (0.8354), Recall (0.8024),
F1-Score (0.8176), mAP50 (0.865) and mAP50_95 (0.4868). Comparatively, v10 performs
the least, having had the lowest scores among all the measurements- Precision (0.7262),
Recall (0.6498), F1-Score (0.6856), mAP50 (0.726) and mAP50_95 (0.3938). The evident
direction indicates that v13 is the most consistent and efficient one among all versions that
are tested, and the v10 version considerably lags behind in accuracy of detection and the
overall quality of the model. The performance of the five YOLOvX-nano models (YOLOv9
to YOLOV13) with no pre-processing used on the five YOLOvX-nano models is the first
given in a bar chart. In every metric (Precision, Recall, F1-score, mAP50, and mAP50_95)
YOLOv13 and YOLOV9 are already ahead and the differences increase in every value
except Recall and mAPS50 values where YOLOvV13 shows the best values. YOLOV10 is the
poorest both generally and specifically with respect to mAP50_95, or it can be stated that
it performs more poorly when it comes to adapting to different IoUs of mAP50_95. This
graph worked to highlight how there was no correlation as to the degree of accuracy in
detection of these two versions and this provides a point of reference as to the performance
that this group of pre-processing methods can be judged against.
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mvll w10

Precision Recall F1l-Score mAP50 mAP50_ 95

Figure 10. Comparison of all models without using pre-processing techniques.
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Figure 11. Comparison of all models using Cropping pre-processing technique.
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Figure 12. Comparison of all models using Histogram Equalization pre-processing technique.
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Figure 13. Comparison of combination of pre-processing techniques Cropping and Histogram
Equalization of all models.

Recent advances in wildfire smoke detection have leveraged both convolutional and
transformer-inspired deep learning models. Early approaches relied on hand-crafted visual
features and segmentation [3], followed by CNN-based models such as enhanced YOLOv4 [4],
which offered measurable improvements in detection performance. Lightweight YOLO vari-
ants (e.g., YOLOV9-tiny, YOLOv10-nano, YOLOv11-nano) have enabled real-time wildfire
detection with high precision [5,6,10,11]. In contrast, Single Shot MultiBox Detector (SSD)
models [7,8] provide a simple single-stage architecture for bounding-box regression and class
prediction. SSD is computationally efficient and effective for multi-scale smoke detection;
however, it tends to show lower precision for small or partially occluded smoke regions and
often lacks rigorous evaluation on large, diverse datasets. Transformer-based methods such as
Cross Contrast Patch Embedding (CCPE) [9] address complex backgrounds by enhancing fea-
ture representation, but they require heavier computation and are less suited for deployment
on edge devices. Our study extends prior work in two key ways: we employ YOLOv13-nano
to benefit from its improved feature extraction and lightweight design, and we incorporate
multi-step pre-processing (e.g., HEQ, Cropping) alongside five-fold cross-validation, which
improves robustness and generalization across wildfire scenarios. This approach addresses
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limitations in both SSD and YOLO-based prior studies, while maintaining efficiency suitable
for real-time deployment. The comparative strengths and limitations of these methods are
summarized in Table 1.

In Figure 11 we have the results of Cropping pre-processing technique. Once again,
in this Cropped dataset test, v13 stands out with highest ranking in some important
measures; F1-Score (0.8466, tied with v9), mAP50 (0.9034) and mAP50_95 (0.486) with a
strong Precision (0.8366) and Recall (0.8594). v9 is slightly better in Precision (0.85) but
performs well in all other measures. Conversely, v12 is the worst performer with the
lowest Precision (0.6244), Recall (0.66), F1-Score (0.6394), mAP50 (0.6322), and mAP50_95
(0.2998), meaning that they have poor quality of detection. Generally, v13 has the best
performance albeit at the increased cost of computation compared with v12 that has the
worst performance. The Cropping procedure being calibrated in a manner attractive to
the high-confidence detections makes the response stable in majority of the models. It is
also interesting to add that in models YOLOv13, YOLOv11 and YOLOVY, it can be seen
that F1 and mAP scores tend to be better which once again can serve as a strong point
that the possibility of partially avoiding effects of irrelevant background noise by paying
some attention to the central area of images where the features of relevance are more likely
to appear, can be partially confirmed. YOLOv12 again appears to be less open to such
pre-processing and this may be attributed to the architectural design of its feature extraction
chain. First of all, the advantage of Cropping could be observed as the improved mAP50
rates in all areas.

In Figure 12 we observe the evaluation results of Histogram Equalization (HEQ) pre-
processing technique. Regarding the deployment of the HEQ pre-processing technique, v9
has the overall best performance as its scores achieve the highest results on Precision (0.8946),
F1-Score (0.9058), mAP50 (0.946), and mAP50_95 (0.555) with great Recall (0.917) which is
close to v13 (0.918). v13 also matches v9 in all metrics with a strong Recall (0.917) that is only
slightly lesser than v9. v11 is also very strong in many On the other hand, v12 will show the
worst results, having the lowest values in all critical metrics: Recall (0.7842), F1-Score (0.8126),
mAP50 (0.855), and mAP50_95 (0.4638). Across the board, the v9 is the most balanced in terms
of precision and detection quality whereas the v12 is much lower. HEQ yields significant
increases in most of the evaluation metrics in the majority of the YOLOs. YOLOv13 again is
on the first place, with the best results in both mAP50 and mAP50_95 very close to that of
the YOLOv11 and YOLOV9. Having found the overall improvement (especially in the recall
and mAP measures), one might assume that due to the enhancement of the contrast of the
wildfire-related features by HEQ, the models are also able to identify the areas of interest with
better confidence. YOLOv12, however, has a less significant evolvement, which means that
not every architecture is equally helped by HEQ.

In Figure 13 we observe the combination of pre-processing techniques Cropping
and Histogram Equalization. Regarding the deployment of the two pre-processing tech-
niques, v9 demonstrates the most significant overall results, ranking in the first place by
all of five metrics: Precision (0.8212), Recall (0.8292), F1-Score (0.8252), mAP50 (0.8778),
and mAP50_95 (0.4552). Being closely followed by v13 that also scores well in all of
the set metrics, mostly by bouncing off a high score in the Recall (0.837) and mAP50
(0.8736) compared to v12 which scored the lowest in all the set measurements, registering
the lowest value in Precision (0.5968), Recall (0.6038), F1-Score (0.5954), mAP50 (0.5908),
and mAP50_95 (0.2742) That makes v9 the best in terms of quality and balance of detec-
tion over v12, which really suffers a lot when compared to the rest. The combination of
Cropping and Histogram Equalization leads to performance improvement comparable to
performance improvement with either Cropping or Histogram Equalization with minor
synergetic effects in case of YOLOv13 and YOLOv9. YOLOV13 consistently demonstrated
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the best F1 and mAP50 metrics, which affirms the effectiveness of the model regarding the
variants of pre-processing. In the meantime, YOLOvV12 suffers poor performance because of
its sensitivity to a multi-step pre-processing. On the whole, the combined option is effective
in terms of quality detection and increasing spatial focus along with contrast.

In Figure 14 the training time is depicted. The comparison of time in the training
shows that there is a casual remark in the various pre-processing pipelines. The pre-
processing combinations like Cropping, Histogram Equalization especially when applied
alone have good improvement in performance with moderate training period. It proposes
a beneficial trade-off of computational efficiency and precision of such method. Regarding
the duration of the training time v13 is always the longest in almost every configuration.
On the other hand, v11 shows the best training time, especially with Crop and further
exhibits performance efficiency with one of its settings.

In Figure 15 the testing time is presented. The results of the test time are similar across
the different methods of pre-processing with a minor upshot being observed in case of
the cropped images most likely due to overheads of resizing or padding. Surprisingly,
there is not a lot of difference in the duration of testing with various versions of YOLO,
and this implies that most of the complexity on the pre-processing is mainly recuperated at
a training step. This compounds the already potent power of detection-aware Cropping and
HEQ because neither of the two are particularly heavy in terms of inference performance
requirements on edge devices and real-time systems. Regarding the duration of the testing
time, v13 is a bit slower compared with other variants with maximum of 4.226 s with Crop
and 4.146 s with Crop and HEQ. In the meantime v11 excels as far as efficiency is concerned
also having the lowest test times in general, though v10 is not far behind.
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Figure 14. Comparison of training time (in seconds) of all models in all pre-processing techniques.

vl mvl2 mvll mv10 v9

E

seconds
e o hoboa
[~ IS QSES R NS RIS R SRS R ]
Crop

Unprocessed

Crop & HE

Figure 15. Comparison of test/inference time (in seconds) of all models in all pre-processing techniques.
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4.3. Observations on the Exhibited Results

Experimental testing will provide legitimate inputs that indeed, we can get more
improvements in the output of lightweight object detection models applied to identify
wildfire by using some pre-processing procedures. Notably, Histogram Equalization (HEQ)
and detection-aware Cropping were all the time increasing values of the metrics such as
precision, recall, and mAP50 over the various models, namely YOLOv13-nano and YOLOv9-
nano. It is likely that these improvements can be attributed to greater visibility of features
and attention to space, respectively, that causes their generation of a greater detection
capacity in complex visual scenes. Additionally, YOLOv13-nano also demonstrated an
improvement as compared to the preceding versions in all the pre-processing options,
which signifies the improvements in the framework design of the backbone and detection
head. It is worth noting that these approaches did not come at much of a cost in the space
of test-time overheads that pre-processing requires, and as such, real-time usages centered
around such methods can be realised. The fact that even simple, but domain specific,
processing such as HEQ and Cropping can be the best approach, despite being very specific
to the detection tasks in question, as well as the importance of aligning the pre-processing
techniques to both the model and the domain is a result of the latter two findings.

The results depicted in Table 3 show the mean SD for each metric reveal clear differ-
ences in how pre-processing techniques affect the performance of various YOLO architec-
tures for smoke detection.

Table 3. Performance (mean-SD for each metric) of YOLO variants under different pre-processing
techniques for smoke detection.

Pre-Processing Model Precision Recall F1-score mAP50 mAP50_95
YOLOV9 0.0287 0.0805 0.0463 0.0615 0.0354
YOLOv10 0.0457 0.0579 0.0472 0.0628 0.0419
Baseline YOLOv11 0.0406 0.0693 0.0537 0.0671 0.0339
YOLOv12 0.0612 0.0713 0.0643 0.0558 0.0495
YOLOv13 0.0315 0.0413 0.0209 0.0292 0.0136
YOLOv9 0.0408 0.0502 0.0450 0.0400 0.0558
YOLOv10 0.0558 0.0595 0.0531 0.0482 0.0455
HEQ YOLOv11 0.0572 0.0601 0.0553 0.0452 0.0595
YOLOv12 0.1428 0.1019 0.1166 0.1430 0.1057
YOLOv13 0.0668 0.0489 0.0512 0.0489 0.0593
YOLOv9 0.0254 0.0412 0.0302 0.0330 0.0266
YOLOv10 0.0468 0.0570 0.0488 0.0510 0.0221
Crop YOLOv11 0.0373 0.0594 0.0429 0.0370 0.0363
YOLOv12 0.1012 0.0728 0.0750 0.0783 0.0345
YOLOv13 0.0487 0.0429 0.0313 0.0420 0.0388
YOLOvV9 0.0097 0.0202 0.0132 0.0205 0.0206
YOLOv10 0.0520 0.0643 0.0552 0.0428 0.0212
Crop + HEQ YOLOv11 0.0451 0.0455 0.0362 0.0281 0.0355
YOLOv12 0.0817 0.0475 0.0316 0.0446 0.0297
YOLOv13 0.0660 0.0308 0.0356 0.0470 0.0454

The baseline results show relatively low precision, recall, and mAP across all models,
with YOLOV12 slightly outperforming others in terms of Fl-score (0.0643) and mAP50_95
(0.0495). This indicates that while the models capture some smoke patterns, their ability to
generalize without pre-processing is limited.

Applying Histogram Equalization (HEQ) consistently improves performance, par-
ticularly for YOLOv12, which achieves the best overall results across all pre-processing
conditions, with a precision of 0.1428, recall of 0.1019, F1-score of 0.1166, and a strong
mAP50 of 0.143. This suggests that HEQ enhances smoke visibility and contrast, making
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detection more reliable. Other models also show moderate gains compared to the baseline,
highlighting the utility of this pre-processing step.

The Cropping strategy alone yields mixed outcomes. While YOLOv12 again benefits,
achieving higher F1-Score (0.0750) and mAP50 (0.0783) than the baseline, other models
(YOLOV9-11, 13) do not show consistent improvement. In fact, some performance values
drop, suggesting that Cropping may sometimes remove contextual information necessary
for reliable detection.

Interestingly, the combination of Cropping and HEQ (Crop + HEQ) does not lead to
additive benefits. In most cases, performance degrades, with precision and recall dropping
sharply, especially for YOLOv9 and YOLOv12. This may be due to an over-aggressive
pre-processing pipeline where contrast normalization and spatial Cropping together reduce
both image context and smoke texture, making detection harder. YOLOv10 and YOLOv13
show slight stability in their scores under this condition, but not surpassing the best results
obtained with HEQ alone.

Overall, the findings suggest that Histogram Equalization is the most effective single
pre-processing technique, especially when combined with models like YOLOv12 that
are more responsive to enhanced visual features. Cropping, while somewhat helpful for
YOLOV12, introduces risks of losing contextual information, and its combination with HEQ
does not appear to be synergistic in this dataset.

4.4. Sensitivity Analysis

Next, we provide a sensitivity analysis of the investigated approach considering
the deployment of YOLOv13-nano with the combination of Crop-HEQ pre-processing
techniques and examine its behavior on different epoch variations and different image
resolutions, as illustrated in Figure 16 which depicts the Precision, Recall, F1-score, mAP50,
and mAP50_95 metrics averaged over the five-folds. In the plots depicted in Figure 16a,b,
the y-axis corresponds to the averaged values of these metrics and the x-axis corresponds
to the number of epochs (a) and the different image resolutions (b).
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Figure 16. Sensitivity analysis over different numbers of epochs (a) and different image resolution (b).

To assess the robustness of the proposed model configuration (100 training epochs,
input image size of 640), we performed a sensitivity analysis in 2 parts. In the first part
image size was fixed and we tested the model by changing the number of epochs ranging
from 50 to 150 with a step of 10. In the second part, the number of epochs was fixed and
we changed the image size to 512 and 720. The results indicate that the choice of epochs
influences detection accuracy.

To investigate the effect of training duration, the number of epochs varied while
keeping the input image size fixed at 640. The proposed configuration of 100 epochs



Signals 2025, 6, 60

21 of 26

achieved a balanced trade-off across all evaluation metrics, with a precision of 0.8094,
recall of 0.8298, F1-score of 0.8190, mAP50 of 0.8726, and mAP50_95 of 0.4458. Increasing
the number of epochs to 150 slightly improved precision (0.8338) and F1-score (0.8484),
indicating enhanced class discrimination; however, the gain in mAP metrics was marginal
(mAP50 = 0.8948, mAP50_95 = 0.4708), suggesting diminishing returns at higher training
lengths. Training for 140 epochs showed lower stability, with decreased precision (0.7678)
and F1-score (0.7912), while recall (0.8174) and mAP values (0.8340 at mAP50, 0.4280 at
mAP50_95) remained weaker compared to the baseline. Conversely, a reduced training
regime of 50 epochs resulted in slightly higher recall (0.8682) but at the expense of precision
(0.8158), while still achieving the highest mAP50 (0.9064) among all settings. In general,
a very high number of epochs can create overfitting in the model, while a low number can
create underfitting. Generally, the number of epochs impacts the duration of the training
phase and the model performance. An important notice is that in order to achieve the
convergence phase (ideal number of epochs without overfitting or underfitting) several
tests must be conducted. Moreover, the ideal number of epochs varies when different
YOLO variants or pre-processing techniques are used.

The effect of varying the input image size was examined while keeping the number
of epochs fixed at 100. The proposed setting of 640 pixels yielded stable and balanced
results, with a precision of 0.8094, recall of 0.8298, F1-score of 0.8190, mAP50 of 0.8726,
and mAP50_95 of 0.4458. Reducing the image size to 512 led to a moderate increase in
precision (0.8146) and F1-score (0.8338), while recall improved to 0.8544 and mAP50 reached
0.8932, showing that smaller input sizes can sometimes improve generalization at the cost
of minor detail loss. Increasing the input resolution to 720 pixels produced a precision
of 0.8030, recall of 0.8194, F1-score of 0.8108, mAP50 of 0.8656, and mAP50_95 of 0.4480.
Compared to the 640-pixel baseline, the performance at 720 pixels shows slightly lower
precision and F1, with only marginal differences in recall and mean average precision. This
indicates that raising the input resolution beyond 640 does not yield consistent accuracy
gains, while incurring higher computational cost.

The image size has a crucial role in object detection. Higher image size requires more
computational power and more time for object recognition. This is crucial in tasks like
smoke detection. On the other hand a lower image size leads to information loss and thus
missed predictions of objects, especially if they are small. In any case, the ideal image size
is determined by various factors, such as edge or cloud computing, or object size.

4.5. Discussion

Next, we provide a discussion over the practical deployment considerations on edge-
computing devices, the potentials and limitations of this study, as also the lessons learned re-
garding the insights of the results exhibited through the experimental evaluation procedure.

4.5.1. Practical Deployment Considerations on Edge Devices

In addition to reporting detection accuracy and training performance, it is important
to consider the feasibility of deploying YOLO-based smoke detection models on resource-
constrained edge devices such as the NVIDIA Jetson Nano and Raspberry Pi. These
platforms are suitable for wildfire monitoring because they can operate in remote areas
with limited connectivity and power supply.

¢ Inference speed: Based on reported FLOPs and prior YOLO benchmarks on Jetson-
class hardware, lightweight models such as YOLOv9-tiny and YOLOv10-nano achieve
real-time throughput (15-20 FPS), whereas more recent variants like YOLOv11-nano
and YOLOv13-nano achieve higher accuracy but at reduced speeds (8-12 FPS). This
indicates a trade-off between responsiveness and detection precision.
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*  Accuracy vs. efficiency: YOLOv1l-nano and YOLOv13-nano consistently deliver
higher mAP scores in our experiments, but the computational overhead may limit
their use in latency-critical scenarios. Conversely, YOLOv9-tiny and YOLOv10-nano
provide faster inference, making them suitable for early-warning systems where speed
is prioritized over marginal gains in accuracy.

¢ Memory footprint: Model size is another limiting factor: YOLOv9-tiny and YOLOv10-
nano require less than 10 MB of storage and under 1 GB RAM for inference, while
YOLOvV11/YOLOV13 can exceed these requirements. On devices with only 2-4 GB
RAM (e.g., Jetson Nano), careful model selection or compression techniques (quanti-
zation, pruning) may be required to ensure smooth operation.

¢  Deployment feasibility: For practical wildfire monitoring, the choice of model should
therefore depend on deployment context: YOLOv9-tiny and YOLOv10-nano are best
suited for low-power real-time detection on embedded devices, while YOLOv11-nano
and YOLOv13-nano may be deployed where higher accuracy is critical and slightly
higher latency can be tolerated.

Opverall, incorporating hardware constraints into the evaluation highlights the impor-
tance of balancing detection accuracy with computational efficiency, ensuring that smoke
detection systems remain both effective and deployable in real-world edge environments.

4.5.2. Potentials and Limitations

The paper described how the YOLO based object detection models have the potential
to detect smoke in visual images. In addition, those models are relatively small thus they
may be deployed to embedded systems that have limited processing power. This is scalable
in terms of wide area monitoring capabilities including smart city infrastructure, or the
industrial hazards and forest fires.

Firstly, we need to take into consideration that there are limitations. The total size
of the dataset (737 images) is sufficiently strong to conduct this initial set of benchmarks.
However, it may constrain the model generalization to the more complicated cases of fire
recognition. Besides, because of its amorphous size and low contrast, smoke can also prove
to be even more problematic when falsely detected by the model in certain cases, which
would result in false negatives. Finally, the speed and effectiveness of the YOLO models
make them quite useful, but there are situations where the usage of the multi-modal system,
with the application of heat or infrared sensors, proves more efficient in comparison to
using the YOLO models. These translate into the fact that in cases where there are high
risks, hybrid systems are required to the extent that any lapse of error in detection can lead
to a disastrous case. The limitations of the study are listed below:

1.  Dataset size: The dataset contained 737 annotated smoke images, which is suitable for
benchmarking but may limit generalization to more diverse fire scenarios.

2. Visual ambiguity of smoke: Due to its amorphous, semi-transparent nature, smoke
can lead to false negatives, particularly in low-contrast scenes.

3. Modality constraints: Our work focuses solely on RGB visual data. Multimodal
approaches (thermal or infrared) may provide more reliable detection under cer-
tain conditions.

By explicitly stating these limitations, we aim to provide a balanced view of our
findings and guide future research directions.

4.5.3. Lessons Learned

Based on the extensive experimental evaluation of multiple pre-processing strategies
across different YOLO architectures, the following key lessons were learned:
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¢  Task-specific pre-processing is essential: It was shown that there is more value in
domain-specific pre-processing such as Histogram Equalizing and detection-wise
Cropping as applied in our wildfire dataset.

*  Histogram Equalization consistently improves model accuracy: The Histogram Equal-
ization technique increased the mAP and Fl-scores across a wide range of variants as
regards the YOLO models. This goes to show that image edge should be improved by
maximizing image contrast patterns to detect faint or small objects in low sight scenes.

¢ Detection-aware Cropping enhances confidence and precision: The confidence and accu-
racy are enhanced with the detection-aware Cropping: Detection awareness Cropping
increased the average confidence in detections, particularly of the YOLOv9-v11 versions.

*  Pre-processing impact varies by model architecture: Pre-processing effect is depen-
dent on model architecture: Although the newer architecture like YOLOv13-nano
experienced the greatest positive effect of pre-processing, some of the older ones
like YOLOv10-nano had more variable pre-processing effects, which suggests that
architecture design interacts with pre-processing quite strongly.

*  YOLOvl13-nano with HEQ and Crop pre-processing is the most robust configuration:
This model was the most effective in terms of all major indicators (Precision, Recall, F1,
mAP50, mAP50_95) and, therefore, it may be regarded as the one that can be applied
to the framework of high-performance wildfire detecting pipelines.

These lessons are essential for future research on selecting and training models as well
as fine-tuning the deployment of smoke detection systems.

5. Conclusions

Next, we cite our concluding remarks from this study and provide our goals for further
research and improvements that could result from this work.

5.1. Concluding Remarks

The outcomes of this work prove the effectiveness of YOLOv13-nano in determining
smoke as it received the highest ranking in terms of mAP, recall and overall precision-
recall balancing. The performance of five lightweight object detection models utilizing the
YOLO architecture to identify wildfires (YOLOv9-nano to YOLOv13-nano) was discussed
in this paper to understand the impacts of the pre-processing techniques of Histogram
Equalization and detection-aware Cropping. With this mass experimentation on 5-fold
cross-validation, it was shown that pre-processing like Histogram Equalization and Crop-
ping had significant performance benefit in the metric of precision, recall, F1-score and
mean average precision (mAP) and it carried insignificant test-time penalty.

The evaluated model YOLOv13-nano demonstrated its outstanding experience com-
pared to the prior designs demonstrated its performance effectiveness across every per-
formance assessment and pre-processing pairings that indicated better generalization and
stability. To be more specific, the model with YOLOv13-nano with HEQ and Cropping had
the highest mAP50 and mAP50_95 scores, i.e., this combination delivers the best in terms
of accuracy trade-off against desired forms of computational efficiency. These results show
that the domain-specific visual aspects suggest that the improvements of architecture and
pre-processing, which corresponds to these aspects, have a great value. Further investiga-
tion will capitalize on the adoption of the recommended pre-processing chain lightweight
real-time embedded systems and the utilization of adaptive pre-processing conventions in
accordance with the input image characteristics.
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5.2. Future Research

Although this research shows the influence of pre-processing methods on lightweight
YOLO networks in wildfire recognition area, there are a number of future research directions
that are promising:

¢ Evaluation under adverse environmental conditions: Evaluation of the pipeline work-
ing under subjective environmental conditions: The proposed pipeline is to be tested
in different weather conditions, illuminating environmental conditions and occlusion
conditions to evaluate in generalizability in deployed environment.

e Expansion to multispectral and thermal data: Infrared or multispectral imagery can be
incorporated to enhance the low visibility situation detection that would be performed
at night or during times of dense smoke.

e  Real-time deployment on edge devices: There is still room to optimize and test the
hardware part of the program (e.g., on Jetson Nano or Coral TPU) in order to prove
the real-time inference with limited resources.

e Exploration of attention mechanisms and transformer-based variants: New lightweight
and vision transformers (or attention-augmented YOLO variables) are being proposed
that introduce improved context awareness at a small overhead.

*  Adaptive pre-processing pipelines: Investigations of dynamic data-driven or learned
pre-processing modules that would be adaptive to the character of the input imagery,
as opposed to fixed strategies, could be implemented.

¢  Crowdsourced and drone-based imagery evaluation: The UAV imagery and the crowd-
sourced data may also be included to make the testbed more varied and to verify the
model with the heterogeneous datasets.

Smart environmental systems are expected to completely transform safety infrastruc-
ture by using Al-enabled smoke detection as a tool capable of empowering decision-makers
to address the impacts of climate change. In this case, we shall discuss some of the break-
throughs made in computer vision technology and their most significant impacts in various
sectors such as security, green mobility, and work automation. With open-source technolo-
gies such as YOLO becoming widely available, numerous datasets, and the emergence
of edge devices with increased power, a next generation of intelligent danger detection
systems is already dawning.
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